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We focus on the differences among the analytical optimization of traffic flow on a road network, modeled by
a fluid-dynamic approach, and a dynamic random one. In particular, two real urban networks are analyzed: Re
di Roma Square, in Rome, and Via Parmenide crossing, in Salerno. With such two examples, it is possible to
show that dynamic random algorithms are not the right choice for the improvement of traffic conditions.
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I. INTRODUCTION

In this paper, we focus our attention on urban traffic regu-
lation through a random approach and an optimization algo-
rithm for a fluid-dynamic model, introduced in �1�. The aim
is to show that a dynamic random approach is absolutely not
convenient in order to improve traffic conditions, as sug-
gested in �2�.

In particular, in �2�, a discussion about benefits due to
synchronization among a series of traffic lights using cellular
automata is reported. The simulation of traffic flows is made
through a different choice of signal period T and time delay
�. Moreover, it is shown that a correct synchronization gives
some improvements only when the traffic density is low.
When the traffic demand surpasses a given saturation value,
synchronization is useless and also the use of a fixed T and a
random delay �, assigned to each traffic light, lets the
throughput remain the same.

The principal aim of this paper is to use network models,
as opposed to single roads, in order to verify the perfor-
mances of traffic regulation algorithms. We show that an
optimization approach outperforms a random one, even in
heavy traffic conditions. Also, the use of random parameters
for traffic regulation can lead to traffic conditions in which
accidents are very frequent.

The mathematical modeling of vehicular traffic requires,
first of all, the choice of the scale of representation. There are
many examples of models at any scale, from the microscopic
to the macroscopic through the kinetic. Each of them implies
some technical approximations and suffers therefore from
related drawbacks, either analytical or computational. In
what follows, the attention is focused on a macroscopic
model for car traffic.

Macroscopic models aim at describing the big picture
without looking specifically at each single subject of the sys-
tem; hence, they are computationally more efficient. Few
partial differential equations, which can be solved numeri-
cally in a feasible time, are normally involved, and the global
characteristics of the system are readily accessible. Neverthe-
less, now the modeling is, in a sense, less accurate than in the
microscopic case, due to the fact that both approaches rely
on the continuum hypothesis, clearly not physically satisfied
by cars along a road. The number of vehicles should be large
enough so that it makes sense to introduce concepts like
macroscopic density, average speed, or kinetic distribution

function as continuous functions of space and, in the latter
case, also velocity. However, the continuum hypothesis can
be profitably accepted as a technical approximation of physi-
cal reality, regarding macroscopic quantities globally as mea-
sures of traffic features and as tools to depict the spatial and
temporal evolution of traffic waves.

Macroscopic modeling is based on the idea, originally
proposed in the 1950s by Lighthill and Whitham and, inde-
pendently, by Richards �LWR model; see �3,4��, that first-
order differential equations, such as conservation laws, could
describe the motion of cars along a road, provided a large-
scale point of view is adopted so as to consider cars as small
particles and their density as the main quantity to be looked
at. This analogy remains nowadays in all macroscopic mod-
els of vehicular traffic, as terms like traffic pressure, traffic
flow, and traffic waves demonstrate. To overcome the main
limitations of the LWR model, various other approaches
were considered; we refer to �5,6�. Such a modeling tech-
nique helps to describe some macroscopic phenomena such
as shock-wave formation and propagation; see �7,8�.

About 40 years separate the LWR model and the first
models for car traffic networks. One macroscopic model for
road networks was proposed in �9�; for a review, refer to
�10�. Car traffic reconstruction through first-order models is
discussed in �11�. Other important contributions for network
models are �12–15�.

Also optimization problems for road networks have been
considered; see �1,16–19�.

Here, two real cases study of urban networks are pre-
sented: the first one is Re di Roma Square, a large traffic
circle inside the urban network of Rome, while the second
one is Via Parmenide crossing, a little part of Salerno net-
work, formed by two incoming roads and one outgoing road.
There are some motivations which inspired the choice of
these two case studies. Re di Roma Square is a part of Rome,
which is highly interesting since it is characterized by some
congestion phenomena, and it is very important to under-
stand how to avoid them. Via Parmenide crossing, instead,
unlike Re di Roma Square, is a small network, but its most
important aspect is connected to queue formation due to a
traffic light, which presents a cycle with a red phase too long.

The analysis of network performances for such two cases
is made by two cost functionals that measure the average
velocity and the average traveling time of cars, respectively.
The results that arise from the study of these two types of
networks are very interesting. In fact, simulations show that
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dynamic random algorithms and optimization approaches are
very similar for Re di Roma Square and totally different for
Via Parmenide crossing. The motivation of this behavior can
be easily explained if we consider the statistical properties of
dynamic random simulations. In short, a dynamic random
simulation is similar to a particular case where all the param-
eters of the network are assumed equal to 0.5.

When we consider networks with a great number of nodes
�Re di Roma Square�, the time average of optimal param-
eters can approach 0.5, and this justifies the similarities
among dynamic random simulations and optimal ones.
Hence, to discriminate between them, it is necessary to in-
troduce the stop-and-go wave �SGW� functional �see �1,20��,
which measures the variation velocity, cause of car accidents.

For simple networks with one junction, like Via Par-
menide crossing, we have a totally different behavior from
Re di Roma Square. In this case, the network topology im-
poses the adoption of only one traffic parameter, whose ana-
lytical optimization �see �1�� gives a solution far from 0.5;
hence, the dynamic random simulation and optimal ones can-
not be similar.

This paper is organized as follows. We introduce the
model for car traffic on an urban network and the optimiza-
tion of such a model in Sec. II. Then, Sec. III contains simu-
lations related to Re di Roma Square and Via Parmenide
crossing, with consequent discussions about dynamic ran-
dom and optimization algorithms in Sec. IV. The paper ends
with conclusions in Sec. V.

II. MODEL FOR ROAD NETWORKS AND OPTIMIZATION

In order to model car traffic networks, we consider the
formulation based on conservation laws. Lighthill and
Whitham �3� and Richards �4�, for a single road, proposed
the equation

�t� + �xf��� = 0, �1�

where �=��t ,x�� �0,�max�, �t ,x��R2, is the density of cars,
�max is the maximal density of cars, f���=�v��� is the flux,
and v��� is the average velocity. Recently, this approach was
extended to networks �9,10�.

A network is described by the couple �I ,J�, where I
= �Ii : i=1, . . . ,N� represents the set of roads, while J is the
collection of junctions, which connect roads to each other.
The evolution is determined by Eq. �1� on each line Ii and by
Riemann solvers RSJ at each node �see �9��, based on rights
of way and traffic distribution parameters p and �. Roughly
speaking, for each initial datum constant on each road, RSJ
assigns a solution formed by a single wave on each road �see
�10��. Here, we consider p and � as controls.

In particular, for road junctions J with n incoming roads
and m outgoing roads, Riemann solvers RSJ �see �9,10�� are
based on the following rules.

�A� There are some fixed coefficients, which represent the
preferences of the drivers. These coefficients indicate the dis-
tribution of the traffic from the incoming roads to the outgo-
ing ones, and thus can be collected in a traffic distribution
matrix:

A = �� ji� j=n+1,. . .,n+m,i=1,. . .,n � Rm�n,

such that

0 � � ji � 1, �
j=n+1

n+m

� ji = 1,

for i=1, . . . ,n and j=n+1, . . . ,n+m, where � ji is the per-
centage of drivers who, arriving from the ith incoming road,
take the jth outgoing road.

If we refer to junctions with one incoming road �n=1�, a,
and two outgoing roads �m=2�, b and c, respectively, then
matrix A reduces to the column vector

� �

1 − �
	 ,

where � �1−�� represents the probability that drivers could
go to the outgoing road b �c�, from the incoming road a.

�B� Respecting �A�, drivers behave so as to maximize the
flux through the junction J.

If n�m, a yielding rule is needed. In particular, for junc-
tions with two incoming roads �n=2�, a and b, and one out-
going road �m=1�, c, such a rule can be stated as follows.

�C� Assume that not all cars can enter the road c and let Q
be the amount that can do it. Then, pQ cars come from the
road a and �1− p�Q cars from the road b.

Notice that p can be thought as a right-of-way parameter.
In order to measure the efficiency of the network, we

consider two cost functionals, measuring the velocity at
which cars travel through the network and the time taken by
cars to travel on the network.

Since the model considers macroscopic quantities, we can
estimate the averages integrating over time and space the
average velocity and the reciprocal of average velocity, re-
spectively. If �i indicates the density on road i, we thus de-
fine the following:

J1�t� = �
i



Ii

v„�i�t,x�…dx ,

J2�t� = �
i



Ii

1

v„�i�t,x�…
dx .

We consider a fixed temporal interval �0,T� for some T�0.
For the regulation of traffic, we want to maximize J1 and

minimize J2. A systematic presentation of the optimization
algorithms and obtained results for such cost functionals is
given in �1�.

For a more precise description of traffic conditions, it is
useful to define a third cost functional. It is known that the
number of car accidents increases as the difference in the
velocities of single drivers does. We follow the approach of
�1,20�, considering the SGW functional, namely

� = 

0

T 

�Ii

�Dv����dt dx ,

which gives estimates on the security of drivers, who travel
on the network, because it measures the velocity variation.

CASCONE et al. PHYSICAL REVIEW E 78, 026113 �2008�

026113-2



III. SIMULATION CASES

This section is devoted to the presentation of two different
studies of real urban networks.

First, we focus on Re di Roma square, a large traffic circle
in Rome, formed by junctions having two incoming and one
outgoing road �2�1 junctions� and junctions with one in-
coming and two outgoing roads �1�2 junctions�. In this
case, the traffic distribution coefficients at 1�2 junctions are
in reality completely determined by road capacities �and the
characteristics of the nearby portion of the Rome urban net-
work�, and only right-of-way parameters for the 2�1 junc-
tions can be chosen for the optimization. In Fig. 1 �left�, we
report the topology of Re di Roma Square, where junctions
of 2�1 type �1, 3, 5, 7, 9, 11� are in white, while junctions
of 1�2 type �2, 4, 6, 8, 10, 12� are in black.

Then, we consider a small area of the Salerno �Italy� ur-
ban network. In particular, in Fig. 1 �right� the portion of the
interested area is depicted. We focus on the crossing indi-
cated by o, consisting of two incoming roads and one outgo-
ing road. The incoming road from point a to point o �a por-
tion of Via Mauri, which we can call road a-o� is very short
and connects Via Picenza to Via Parmenide. The incoming
road from point b to point o �which we can call road b-o� is
a part of Via Parmenide. Crossing o is ruled by a traffic light,
with a cycle of 2 min �120 s�, where the phase of green is
15 s for drivers, who travel on the road a-o. It is evident that
such a situation leads to very high traffic densities on the
road a-o as the short duration of the green phase does not
always allow the absorption of queues. From a probabilistic
point of view, we can say that road b-o has a right-of-way
parameter that is

p =
105

120
= 0.875,

while road a-o has a right-of-way parameter

q = 1 − p = 1 − 0.875 = 0.125.

Our aim is to study this particular crossing in order to
understand how it is possible to improve the conditions of
traffic in presence of a traffic light.

For the first and second cases that we have described,
the evolution of the traffic behavior is simulated in a time
interval �0,T�, where T=30 min for a flux function
f���=��1−��, considering �max=1 and v���=1−�. As for the
initial conditions on the roads of the network, we assume
that, at the starting instant of simulation �t=0�, all roads are
empty. Moreover, for Re di Roma Square, we assume bound-
ary condition 0.3 or 0.75 for roads with end points not infi-
nite. In order to simulate Via Parmenide crossing, we con-
sider a boundary datum 0.8 for roads that enter the junction o
and a boundary condition 0.3 for the outgoing road.

We study three simulation cases: �a� right-of-way param-
eters, which optimize the cost functionals J1 and J2 �optimal
case�; �b� fixed right-of-way parameters �fixed case�; it
means that the right-of-way parameter is the same for each
junction �p=0.2 for Re di Roma Square; for Via Parmenide
crossing, we assume that the fixed case is given the real
situation ruled by the traffic light, which is to say that p
=0.875�; �c� dynamic random parameters �dynamic random
case�, the right-of-way parameters for junctions of 2�1 type
change randomly at every step of the simulation process.

Figure 2 shows some simulation results of Re di Roma
Square for the temporal behavior of the cost functionals J2,
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FIG. 1. Topology of Re di
Roma Square �left� and Via Par-
menide crossing in Salerno
�right�.
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FIG. 2. J2 with boundary conditions equal to 0.3 �left� and close-up around the optimal and dynamic random cases �right�.
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computed on the whole network. We can note that the fixed
configuration is worse than the optimal one. The perfor-
mances of the optimal and dynamic random cases are very
similar. We could ask if we can avoid optimizing the network
and operate in dynamic random conditions, although one
could think that the conditions of traffic are heavily chaotic.

Figure 3 shows the SGW functional �, which indicates
that the security on the roads is greater in the optimal case
than in the dynamic random configuration. Observe that the
optimal case for � is simulated according to the optimization
algorithm for the cost functionals J1 and J2 �and not for �
itself�.

To complete the discussion on the security issue, we refer
to �20�.

Now, we present the simulation results for Via Parmenide
crossing. First of all, notice Figs. 4 and 5, where we report
the functional J1. It is evident that the optimal case is higher
than the fixed simulation �which corresponds to the real case
p=0.875, obtained by the cycle of the traffic light for the
junction o�; hence, actually, Via Parmenide in Salerno does
not follow a traffic optimization policy. Some traffic engi-
neers have observed the traffic behavior for Via Parmenide,
and they have seen that there are some intervals of time in
which some cars are stopped by the traffic light, while other
roads are completely empty. This situation means that the
cycle of the traffic light is too long. A solution could be to
reduce the cycle or substitute the traffic light with a stop
sign.

Let us focus on the performances of the dynamic random
simulation. It is obvious that such a simulation does not
match the optimal case and, moreover, it is possible to see
that its behavior is very similar to a fixed simulation with

p=0.5. Notice that p=0.5 represents the minimum for J1. In
fact, for the flux function f���=��1−�� �see �1��, we have

J1�p� = 	 −
1

2
�1 − 4cp −

1

2
�1 − 4c�1 − p� ,

where 	 and c�0 are constant, not depending on p. As

dJ1�p�
dp


 0 ⇒ p � �0.5,1� ,

we conclude that J1�p� is decreasing in �0,0.5� and increasing
in �0.5,1�. Hence, p=0.5 is the minimum for J1.

Thus, the dynamic random choice corresponds to the
worst case.

IV. RANDOMNESS vs OPTIMAL CHOICE

From what we have seen, it is necessary to make a dis-
cussion that unifies the performances of the dynamic random
simulation for the two case studies �Re di Roma Square and
Via Parmenide�. We could ask why dynamic random simu-
lations are so dissimilar for such analyzed networks.

The answer can be found through examination of the sta-
tistical properties of dynamic random coefficients. Suppose
that we have a network with N junctions. It is necessary to
consider the optimization of right-of-way parameters for
junctions with a number of incoming roads greater than the
number of outgoing ones. In other cases, we consider distri-
bution coefficients, which are usually fixed, as they depend
on the paths of drivers, and so �with the exception of particu-
lar cases� no optimization algorithm is used for such coeffi-
cients.

Consider a junction i of the network, for which we have to
consider a right-of-way parameter pi. In a dynamic random
simulation, the right-of-way parameters are chosen in a ran-
dom way for each step of the simulation process, supposed to
have M steps. Then, the parameter pi changes M times, and
its average value is

1

M
�
i=1

M

pi.

Then, pi is a random variable with uniform distribution in
the real interval �0,1�. If M is very large, then by the strong
law of large numbers, we obtain that
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FIG. 3. Behavior of the SGW functional � in the case of bound-
ary conditions equal to 0.75.
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lim
M→�

1

M �
i=1

M

pi → E�pi� = 0.5,

and hence it is possible to affirm that the average right of
way parameters tends to 0.5. In other words, a dynamic
random simulation of a network approximates a particular
case, where the junction i has a fixed right-of-way parameter
pi=0.5.

Now, let us focus on the two cases study. For Re di Roma
Square, there are six junctions with two incoming roads and
one outgoing road, for which it is necessary an accurate
choice of right-of-way parameters. With the optimal algo-
rithm, such parameters are computed to be very different
from 0.5. However, it is possible to show that the average
value of right-of-way parameters is very close to 0.5, and this
justifies the similar behavior among dynamic random simu-

lations and optimal ones. For Via Parmenide, the optimal
solution is far from p=0.5. Now, the dynamic random simu-
lation cannot match the optimal case.

In the case of Re di Roma Square, the adoption of the
SGW functional and the analysis of densities �described in
detail in �1�� are necessary because, if we consider networks
with many junctions, the great variety of values of traffic
flows could let the dynamic random simulation be similar to
the optimal one.

For Via Parmenide crossing, unlike Re di Roma Square,
the optimal solution, from the mathematical definition of the
cost functionals, is never equal to p=0.5 �see �1��; hence, the
dynamic random approach must fail, as confirmed by simu-
lations.

Finally, we can conclude that dynamic random simula-
tions are absolutely not convenient for the optimization of
urban networks, both in the case of networks with many
junctions �like Re di Roma Square� and for networks with
only one junction �like Via Parmenide crossing�.

V. CONCLUSIONS

In this paper, we consider the problem of car traffic regu-
lation through the analysis of two different approaches: a
random approach, as described in �2�, and the optimization
of traffic parameters, as in �1�. Some cost functionals that
measure average velocity and average traveling time of cars
are introduced. Then, two real cases of urban networks—Re
di Roma Square, in Roma, and Via Parmenide crossing, in
Salerno—are considered. Although such two cases are com-
pletely different from each other, it is possible to affirm that
random approaches are not useful to improve the traffic be-
havior.

�1� A. Cascone, C. D’Apice, B. Piccoli, and L. Rarità, Math. Mod-
els Meth. Appl. Sci. 17, 1587 �2007�.

�2� D. W. Huang and W. N. Huang, Phys. Rev. E 67, 056124
�2003�.

�3� M. J. Lighthill and G. B. Whitham, Proc. R. Soc. London, Ser.
A 229, 317 �1955�.

�4� P. I. Richards, Oper. Res. 4, 42 �1956�.
�5� N. Bellomo and V. Coscia, C. R. Mec. 333, 843 �2005�.
�6� D. Helbing, Rev. Mod. Phys. 73, 1067 �2001�.
�7� A. Bressan, Hyperbolic Systems of Conservation Laws—The

One-dimensional Cauchy Problem �Oxford University Press,
Oxford, 2000�.

�8� C. Dafermos, Hyperbolic Conservation Laws in Continuum
Physics �Springer-Verlag, Berlin, 1999�.

�9� G. Coclite, M. Garavello, and B. Piccoli, SIAM J. Math. Anal.
36, 1862 �2005�.

�10� M. Garavello and B. Piccoli, Traffic flow on Networks, Applied
Math Series, Vol. 1 �American Institute of Mathematical Sci-
ences, Springfield, 2006�.

�11� H. Haj-Salem and J. P. Lebacque, Transp. Res. Rec. 1802, 155

�2002�.
�12� C. F. Daganzo, Transp. Res., Part B: Methodol. 28, 79 �1994�.
�13� C. F. Daganzo, Transp. Res., Part B: Methodol. 29, 79 �1995�.
�14� D. Helbing, J. Siegmeier, and S. Lämmer, Networks Hetero-

geneous Media 2, 193 �2007�.
�15� J. P. Lebacque and M. Khoshyaran, in Transportation

Planning—State of the Art, edited by M. Patriksson and K. A.
P. M. Labbe �Kluwer Academic, Dordrecht, 2002�.

�16� M. Gugat, M. Herty, A. Klar, and G. Leugering, J. Optim.
Theory Appl. 126, 589 �2005�.

�17� D. Helbing, S. Lämmer, and J.-P. Lebacque, in Optimal Con-
trol and Dynamic Games, edited by C. Deissenberg and R. F.
Hartl �Springer, Dordrecht, 2005�, pp. 239–274.

�18� D. Jacquet, C. Canudas de Wit, and D. Koenig, Proceedings of
the Conference on Decision and Control, and European Con-
trol Conference, Sevilla, Spain, 2005, pp. 2164–2169.

�19� A. Marigo, Networks Heterogeneous Media 1, 315 �2006�.
�20� R. M. Colombo and A. Groli, Appl. Math. Lett. 17, 697

�2004�.

28.25 28.5 28.75 29 29.25 29.5 29.75 30
t �min�

0.846

0.848

0.85

0.852
J1

FIG. 5. Behavior of J1 for Via Parmenide crossing among the
dynamic random simulation �double-dot-dashed line� and the fixed
simulation with p=0.5 �solid line�.

OPTIMIZATION VERSUS RANDOMNESS FOR CAR … PHYSICAL REVIEW E 78, 026113 �2008�

026113-5


